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Abstract--Considerable temperature gradients are often found in the stationary case in the single fins 
of an air-water heat exchanger. A theoretical investigation of the effect of the dynamics of the fins has 
been performed for the over-all heat exchanger dynamics. 

A model which includes radial and axial temperature profiles is compared with a simple model where 
radial gradients are neglected. For most practical cases it is found that the simple model represents the 
dynamics very well at frequencies below 10 15 rad/min. 

The model for the fin is solved with high accuracy using a low order orthogonal collocation approach 
and the complicated 3-dimensional heat exchanger model is thus reduced to a computationally 

simple system. 

N O M E N C L A T U R E  

A, effective heat-transfer area [m 2] ; 
Ai, Fourier coefficient in residue expansion, 

equation (7); 
Ar, area of tube wall [m2]; 
Akj, expansion coefficient in the first derivative, 

equation (10); 
Afy, outer area of heat exchanger [m 2]; 
Aw, area of inner tube [m2]; 
Bi, Fourier coefficient in collocation expansion, 

equation (18); 
Bkj, expansion coefficient in the second derivative, 

equation (11); 
BBIj, see equation (14); 
C, heat content of heat exchanger and water 

[kcal/°C]; 
C,  see equation (15); 
Cp, specific heat capacity [kcal/(g°C)]; 
E, fin effectiveness; 
E1.2, parameters in equations (39) and (40); 
F, see equation (27) [rain 1]; 
G, heat flow of air [kcal/CC min)] ; 
hi, heat-transfer coefficient water-tubewall 

[kcal/(m 2 °C min)]; 
hyx, heat-transfer coefficient tubewall-air 

[kcal/(m 2 °C min)] ; 
hy2, heat-transfer coefficient fin air 

[kcal/(m 2 °C rain)]; 
Ji, Bessel function; 
K, see equation (46); 
k:,  heat conductivity of fin [kcal/(m "C min)]; 
L, length of finned tube [m]; 
m, (--s-z)1/2;  
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N, number of collocation points; 
NK, number of fins; 
Pi, inner perimeter of tube [m] ; 
Py, outer perimeter of tube [m]; 
R, radius of fin [m] ; 
R o, UA/G ; 
Rig, see equation (28) [min-1]; 
Riw, see equation (26) [min- l ] ;  
R*, see equation (23) [ ra in- l ] ;  
Ri, inner radius of tube [m] ; 
R 0, outer radius of tube [m]; 
Roi, see equation (37); 
Ro:, see equation(38); 
r', radial coordinate Ira]; 
r, r'/R ; 
ro, Ry/R ; 
S, ~S '  ; 

s', Laplace parameter [min 1]; 
T:, temperature of fin [°C]; 
T/, temperature of tube wall [°C]; 
T 0, temperature of air [°C] ; 
Tw, temperature of water [ 'C] ; 
T0i, temperature of air before heat exchanger 

[°C]; 
To., temperature of air after heat exchanger ['~C]; 
Twi. temperature of water before heat exchanger 

[°C]; 
Tw., temperature of water after heat exchanger 

[°C]; 
t, time [rain]; 
U. overall heat-transfer coefficient 

[kcal/(m 2 °C min)]; 
Vw, water flow [m3/min]; 
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w, 
W, 

w,, 
X, 

Y~, 
Z, 
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heat flow of water [kcal/(°C min)]; 
fin width [m];  
weight coefficient, see equation (16); 
radial coordinate, see equation (12); 
Bessel function; 
axial coordinate. 

Greek symbols 

0:, pf CpfR 2/kr [mini ;  
7, pole, see equation (18); 
p, specific weight [kg/m3]; 
a, see equation (50); 
"c, 2hyR2/(kyw); 
%, see equation (51); 
Zw, see equation (23); 
co, cyclic frequency. 

Subscripts 

f ,  fin; 
9, air; 
r, tube wall; 
s, stationary; 
W, water. 

INTRODUCTION 

THE CROSS-FLOW heat exchanger is in widespread use 
for air- l iquid heat exchanging purposes. For  example 
in large air-cooling systems in chemical plants and in 
air conditioning systems. It is the latter application 
which is considered in this paper, but the results have 
rather general validity. 

The heat exchanger consists of a bundle of tubes 
in which the water is streaming in single or multipass 
arrangements. In order to obtain a high heat transfer 
area the tubes are normally provided with fins, which 
depending on the manufacture might consist of welded 
lamellas or whole punched plates mounted very close 
to each other perpendicular to the tubes. The air passes 
through the heat exchanger in cross-flow. 

Several experimental and theoretical investigations 
of this system have been published in the literature 
(e.g. [1-3]).  The investigations are based on relatively 
simple models, which do not take the fin-dimension 
into account. This does not seem very reasonable as 
it is wellknown that rather steep temperature profiles 
are often found in the fins of practical heat exchangers. 

Furthermore, a recent analysis of the dynamic be- 
haviour and control of the recirculation system [-4] 
shows that the heat exchanger model must be valid in 
the high frequency domain (10-15rad/min) to ensure 
a reliable stability analysis. 

To clear up the dynamic effect of the heat diffusion 
resistance in the fin a very simple model for a fin tube 

is compared with a complicated model, which includes 
the dynamics of the fins. 

The investigation is divided into two parts. First the 
heat diffusion in a single fin is studied and afterwards 
the models for the whole finned tube are compared. 

HEAT TRANSPORT IN A CYLINDRICAL FIN 

With the symbols given in Fig. 1 and in the notation 
list the following equation is derived: 

gT I 1 (7 /' ~Tf~ 
r r? r) (ll 

Boundary conditions: 

T+(0, r) = 0 (2) 

T¢(t, ro) = T/ (3) 

VTj.(t, i) = 0. (4) 

FIG. 1. Sketch of a cylindrical fin. 

In these equations it is assumed that only radial 
temperature variations have to be considered and the 
heat flux through the end is negligible. These assump- 
tions are fulfilled when the fins are thin and the thermal 
conductivity high. 

Equations (1)-(4) are Laplace transformed giving 
the transfer function for disturbances in the tube 
temperature: 

Ty Jl(m) Yo(mr) - Yl(m)Jo(mr) 
= = (5) 
T/ Jl(m) Yo(mro) - Yl(rn)Jo(mro) 

m 2 =  - s - z ,  where s is the dimensionless Laplace 
parameter (s = s'c0. 

Ji and Y~ are Bessel functions of order i. Integration 
across the fin area gives the transfer function for the 
mean temperature: 

~,,,, 2ro Yi(m)Ja(mro)-Ja(m)Yl(mro) 
(6) 

Ti (1 - r~)rn Jl(m) Yo(rnro)- Yi(m)Jo(mro) 

The impulse response can be found from (6) as the sum 
of residues: oo 

T¢,~(t) = ~ Aie-~'t (7) 
' i=1 )q 

where 
Ai T 

- dN-(s.. ~ -£ i ) .  2i 

ds 
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T is the numerator and N the denominator of (6). 2~ is 
pole number i. 

Since ~ is added to the Laplace parameter s we can 
in the first place put r = 0 and calculate the poles as 
functions of ro. In the first part of Table 1 2~ and A~ 
are shown for five characteristic values or ro. Small ro 

Table 1 (a). Poles and Fourier coefficients of equation (7), 
z = 0  

21 22 23 24 25 26 
r° AI A2 A3 A4 A5 A 6 

values will give small values of 2~ and A~. The displace- 
ment of the poles for varying z is less for big values 
of ro than for small values and the performance of the 
fin will therefore not only be good but also be nearly 
independent of z. This appears very clearly from 
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In practical heat exchangers ro is close to 1/3, and 
must consequently not exceed the value 2 to obtain 

a satisfactory effectiveness. In this region the poles are 
separated very much from each other, and the first 
pole, 21, will therefore dominate the response for dis- 
turbances of dimensionless frequency much less than 
22(60 <<22). This means that a reasonable approxi- 
mation to the transfer function (6) will be: 

Ty,,, 21 .E 
(9) 

T, s+21 

This is further illustrated below. 
1"216 24 .79  73-18 146.1 243 .5  365"2 0.1 
1"165 0'550 0"498 0-478 0"468 0.463 
2"476 37 .29  107-4 212 .6  353"0 528"4 An approximative solution method 

0.25 
2-276 1-516 1 .459 1 .442 1 .434 1.430 In this section a low order approximation of 

0-333 3 .517 47 .73  136.4  269.5  447 .0  6 6 8 . 8  equations (1)-(4) based on orthogonal collocation is 
3.168 2 .340  2 .281 2-264 2 .257  2 . 2 5 3  studied. This is carried out because the analytical 
7-407 86-34 244-2 481.1  796 .9  1192. 

0.5 6.446 5 .439  5.371 5 .353 5 .345 5 .341  solution method described above is lengthy and 
56.30 549.8  1537. because a low order approximation based on orthog- 0.8 
46-74 44 .68  44.53 onal polynomials may be superior to truncating the 

series (7) after a number of terms corresponding to 
the approximation order. 

Table l{b). Poles and Fourier coefficients of equation (18), 
r = 0, ro = 1/3 The principles of the collocation method are de- 

scribed by Villadsen et al. in a series of publications 
N 71 ';2 73 74 75 76 [5-7],  Some solution possibilities when partial differ- 

B1 B2 B3 B4 B5 B6 ential equations are solved can be found in, for example 

2.995 [8-11]. Very shortly the first and second derivative in 
1 2.995 collocation point k are approximated by a weighted 

3.437 49.45 sum of the dependent variable at the N internal 
2 

3.119 4.582 collocation points and at the boundary points (j = 1, 
3 3.514 48 .16  166.0 a n d j  = N + 2 ) :  

3-167 2 .062  9.284 
10 3.517 47 .73  136.4  269.5  447 .0  667.5 dTk N+2 

3-168 2 .340  2.281 2 .265  2 .234  2.603 dx j=~ AkjTj (10) 

d2Tk N+2 
- Z BkjT~ (11) 

dx2 j=l  

Table 2. Fin effectiveness 

z ro 0"1 0'25 0'333 0"5 0.8 

0"5 0.72 0.84 0"89 0"95 0"99 
1 0"56 0.73 0'80 0'90 0'985 
2 0.40 0.59 0"67 0"81 0"97 
5 0"22 0.38 0-47 0"65 0"93 

l0 0"15 0.26 0'33 0.49 0'87 

Table 2, where the effectiveness, E, is given as a function 
of ro and z. E is found from 

ao 

0) + ~' (8) 

A and B are matrices with constant components and 
they are found once and for all for a specific poly- 
nomium type. 

The radial coordinate in (1)% transformed 

r -- r 0 
x -  ( r o ~ < r ~ < l , 0 ~ < x ~ < l )  

1 - -  r 0 

(1 - r~)c( (?TI 02TI I - - - 1  8Tf 
8t 8x 2 ro 8x 

x - I - -  
1 - ro  
- ( l - ro )2r (T , -Tg) .  (12) 

After Laplace transformation and introduction of (10) 
and (11) in (12) and (4) the following expression is 
obtained: 

BB.  ~, = C ~  (13) 
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where 

BBi.j=B}.j B}'N+zAN+2"J (s+z)(1-r~).6q (14) 
AN+2,N+2 

Here 

K. WAEDE HANSEN and K. DEMANDT 

B}.N+2AN+2.1 
G = - - N ~ +  (15) 

AN+2,N+2 

{~ i # j  
6 i j  = i = j 

1 
B}j = B~j q - -  Ai, j. 

r0 
xi + - -  

1 -- r 0 

The dimensionless Laplace parameter s is only found 
in the diagonal of matrix BB. The other components 
are functions of the collocation constants and ro. T/ is 
a vector of N components giving the temperature in 
the internal collocation points. The N eigenvalues of 
B B  will approximately correspond to the poles in the 
analytical transfer function (5) or (6). 

The mean temperature TLm is found from Tf through 
the application of quadrature formulas: 

2 1 

~ "  = 1 - r ~  fro ~ r d r  

2(_1 - r 9 ) 2ro 11 - / l ~ x d x  + Tydx 
l + r o  ,J0 l + r 0 3 0  
2 N+I 

- ~ [ (1 - ro )x ,+ ro ] .  wirf,,. (16) 
I -1- ro  1 : 2  

Substitution of (13) into (16) gives: 

Ty.,,,= W. Ts= W.(BB ' .C)~. (]7) 

Equation (17) can be transformed to a form similar 
to the Laplace transform of (7): 

Tj.,m - ,@ Bj  
(18) 

r// j=l/~ S-}-Tj" 

For a specific value of N the first values of 7j and 
B~ will correspond to the values of 2j and Aj from the 
analytical solution carried through above. Later values 
of yj and Bj will not necessarily be equal to 2j and Aj. 
The collocation method--roughly speaking--tries to 
include the influence of the modes greater than N by 
changing the values of 2j and Aj for the last of the N 
included values. 

The last half of Table 1 shows this relationship very 
clearly. For r0 equal to 1/3 values of yj and Bj are 
shown for various values of N, when the collocation 
points have been chosen as zeros of Legendre poly- 
nomials. The most important and impressive result is 
that N = 2 gives the first two eigenvalues with high 
accuracy. In Fig. 2 the frequency responses are shown 

-- . x ~ " x N ~  o N = 10ond onolyl"ical solution 
-~ _ \ b  + N =  3 

_\\ :::7 
-~ -- ~ \ ~  zx [, Pole, equotion (9) 

t 

~ go = 1/3 -r =0  

-K X 

?0, 
I I I J I  t I J " J [ I J  I - 

0"1 0"2 0.40'6 [ 2 4 6 8 t 0  20 4 0 6 0  100 200 

Dimensionless froquency, tad 

FIG. 2. Frequency response of various approximate solu- 
tions to the fin equation. 

)'2 

-0-4 

-0"6 

-0"8 

- I ' 0  

- b 2  

-1"4 

for various approximate transfer functions using 
ro = 1/3 and z = 0. The frequency is dimensionless. In 
order to change to units of rad/min one has to divide 
by ~. Characteristic examples are: 

~0"08 rain (aluminium, R = 2 cm) 
c~ = [0.37 rain (iron, R = l'6cm). 

In [4] it is shown that the relevant frequency domain 
is 0 < o)/e < 15 rad/min. This domain is especially in 
the first case displaced to the left in the figure. 

It should be noticed that the collocation solution 
using N = 10 equals the analytical solution in the 
shown frequency interval within machine accuracy. 
Even the solution for N = 2 is satisfactory apart from 
very high frequencies, where small deviations in the 
phase curve from the true solution are found. The first 
order systems--the one point collocation approach 
and the approximation based on the first pole (9)-- 
are also rather good. But they both have a considerable 
phase error at high frequencies. 

It must, however, be concluded that the two point 
collocation approach is very satisfactory in the relevant 
frequency domain, and it will be used in the following 
to solve the fin equations in the complicated model 
for a whole finned tube. 

HEAT TRANSFER IN A FINNED TUBE 

(A) Inclusion of the fin dimension 
A complicated model for the finned tube is derived 
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in the following. The most important simplifications 
are: 

(a) A plug flow model is used for the water flow. 
(b) Radial temperature gradients are neglected in the 

tube. 
(c) No axial heat diffusion in the tube. 
(d) Very thin fin material, i.e. only radial temperature 

gradients are considered in the fin. 
(e) The air residence time is neglected. 
(f) The air temperature is approximated by the aver- 

age of the inlet and outlet air temperature. 

This gives the following set of equations when water 
inlet temperature changes are considered. 

Water. 

~Tw 1 ~Tw 
+ - R * ( T ~ -  Tw) 

?~t rw ?~z 

Tw(t, O) = Tw, 

Tw(O, z) = 0 

A w L  hiPi 
Zw - R *  - 

Vw pwCpw A w  

Tube. 

& 

R L -  

(19) 

(20) 

(21) 

(22, 23) 

- R*w(Tw-T~)+FVTyI~=o+R,o (To-T~)  (24) 

hiP, 

p~Cp, A~ 

Fin. 

2 c~Ty ~2Ty 
(1 - ro )  c~ ~t - ~x 2 

Air. 

T~(0, z) = 0 (25) 

F = kyPywNk (26, 27) 
(1 - ro)LprCp~A~R 

hy~ P, 
Rio -- P'Cv~A ~. (28) 

+ 
f 0 (~X 

X + - -  
1 - -  r 0 

- ( 1 - r o ) 2 z ( T y -  To) (12) 

Ty(t, 0) = T~ (29) 

VTy(t, 1) = 0 Ty(0, x) = 0 (30, 31) 

pfCpfR 2 2hy2 R2 (32, 33) 
0 ~ - -  ~ ' ~ - - .  

ky k fw  

T o . -  To, = Ro,( T~ - To) + Rof(  T I - To) (34) 

T0,=0  , T o = ( T o , + T ~ , ) / 2 = T g , / 2  (35,36) 

h y i P y ( L -  wNr)  (37) 
R~i -- G 

hr2 [Afy - Py(L - wN~)] 
R°I = G (38) 
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This linear set of differential equations contain three 
independent variables. It was found above that the fin 
equation (12) could be solved by a two point collocation 
method with high accuracy in the relevant frequency 
domain. The Tf values in the collocation points and 
therefore also the mean temperature TI,,, can be found 
explicitly as functions of Ti and T 0. Using TI,,, instead 
of T I on the right side of (34) eliminates the x- 
dependency from the equations, and the transfer func- 
tions can easily be derived. These algebraic manipula- 
tions are omitted because of the required space. Details 
can be found in [12]. 

The solution has the following form: 

Tw= _ e_a~ (39) 
rwi 

~u,m 
- E 2 ( 1 - e  -~')  (40) 

rwi 

where E1 and E2 are complicated functions of the 
parameters and the Laplace parameter s'. 

(B) Omission of  the fin dimension 
Besides the above mentioned approximations it is in 

this simple model assumed that the temperature of 
water, tube, and fins has the same value at a specific 
z-position: 

?Tw W ?Tw UA 
?t ~ C ?z - C ( I + R g / 2 )  ( T ° ' - T w )  

(41) 

Rg 
To, _ 1 - Ro/2 To, + __ _ Tw (42) 

1 + Ro/2 1 + Ro/2 

where R 0 = UA/G,  W = pwCpwvw.  
UA is an effective heat-transfer coefficient multiplied 
by the heat-transfer area. This product is determined 
from the parameters of the complicated model (A) 
giving the same static gain of the air temperature for 
inlet water temperature changes: 

- K  
UA - (45) 

1 + K/(26)  

K =  Win  1 G ,,m . (46) 

C is the total heat content of heat exchanger and 
water: 

C = L (pwCpwAw + p~CprAr) 

q- DfCpf~(R 2 -  Rff)wNK (47) 

o T o .... is the static gain from equation (49) below. 
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From (41) and (42) the transfer functions can easily - 4  

be derived: 
- 5 - -  

Tw, = e-  ~ e-~ v ~' (48) -6 - 
Tw, 

~,,,m WIG ( l_e_~e_~v , )  (49) 

Tw ~ "CV s, + l 
(7 

where: 

R a C 
~r - , r~ = - - .  (50, 51) 

W W 

R E S U L T S  

The two models are compared for parameters corre- 
sponding to two typical heat exchangers. In Table 3 
the parameters are shown for a heat exchanger of 
copper with fins of aluminium (type a) and for a cast 
iron heat exchanger with welded fins (type b). Char- 
acteristic operating conditions are also included in the 
table. 

Table 3 

. ~  X'x', x ~ 

x 
o T~, simple  mode l  

z~ ~ simple model  

+ 7"~,c~'nplico~d mode 
x T~complicoted model 

- 9 - -  ~u -- 

-I0 -- -- 0-5 

-- -I "0 

~ ~ X  -1'5 

-2-O 

O'1 0"20J4~61 I 60 100 400 

Frequency, rod/rain 

FIG. 3. Frequency responses of complicated and simplified 
heat exchanger models. Type (a) (see Table 3). 

Parameter Dimension Type (a) Type (b) 

Ri [m] 0.0065 0.0065 
Ry -- 0.0070 0.0080 
R -- 0'0210 0.0160 
L -- 4.2 5.0 
w -- 0.0003 0.0005 
A/y [m 2] 3'23 1'5 
p, Cp, [kcal/(°C. m3)] 828 870 
p/Cp/ [kcal/(°C. m 3 ) ]  594 870 
k j- [kcal/(°C. m. min)] 3.0 0-65 
hl [kcal/(°C. m 2 . min)] 100 100 
hyl -- 2.0 2.0 
hy2 -- 2'0 2'0 
G [kcal/(°C. rain) 5.0 3.0 
vw [m3/min] 0-0055 0.0055 

Using these parameters the frequency responses are 
calculated and recorded in Figs. 3 and 4. 

In Fig. 3, showing the result for the light heat 
exchanger type (a), a very fine agreement between the 
transfer functions (40) and (49) can be seen. Equation 
(48) is a simple time delay and for higher frequencies 
the transfer function will give a too small attenuation 
and too much phase delay compared with (39). 

The frequency responses for the heavy heat ex- 
changer type (b) in Fig. 4 show similar tends. But the 
disagreement between the models is more pronounced 
than in Fig. 3. 

However, it must be concluded that the very simple 
model (B) can substitute the complicated model (A) in 
many cases where the accuracy especially at high 
frequencies is not very important. 

- 2  

- 4  

- 6  

-LSv  T~ o ~u sirnp~ model 

x~x z~ Tw~ simple model 

-P ~ complicated model 
- -  ~ x T~compliceted model 

--5 m u r~ 

+ 

] I I I }  i ~ I i  I I I ~ l  ~ I 
0"1 0"2 0"40-6 I 2 4 6810 20 4060 1(30 200 400  

Frequency, rad/min 

F l o .  4. As Fig.  3 f o r  t ype  (b). 

o 

-0"5  

-I'0 

- F 5  

!-2.o 

-2"5 

"3"0 

C O N C L U S I O N  

A considerable temperature gradient is often found 
in the single fins of a cross-flow heat exchanger. The 
effectiveness of the fins is consequently less than one. 

This is important for the stationary behaviour. But 
if this factor is included in the dynamic model Fig. 2 
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indicates that  it is, nevertheless, possible in most  cases 3. 
to neglect the heat diffusion resistance in the fin. 

The equat ion describing heat  t ranspor t  in a single 
cylindrical fin is solved very accurately using a low 4. 
order or thogonal  collocation method. 

Two models for a whole finned tube are compared. 
The simple one uses the same temperature  for water, 

5. 
tube and fin at a specific axial position, whereas the 
complicated one takes heat-transfer resistances be- 
tween water and tube into considerat ion and includes 6. 
heat  diffusion resistance in the fins. For  frequencies 
below 10 15 rad/min a rather  good agreement  between 

7. 
the models is obtained for heat exchangers with 
parameters  corresponding to two quite different manu- 
factures. 8. 
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DYNAMIQUE D'UN ECHANGEUR DE CHALEUR A 
COURANTS CROISES AVEC AILETTES 

R~sum6 Des gradients de temperature consid~rables sont fr6quemment observ6s, dans le cas stationnaire, 
pour un ~changeur de chaleur air-eau 5. ailettes simples. On a conduit une 6tude th6orique de l'effet 
des ailettes sur la dynamique g~n6rale de l'6changeur. 

On compare un modele qui inclut les profils de temp6rature radiaux et axiaux, avec un modele simple 
o/1 les gradients radiaux sont n~glig6s. On montre que dans la plupart des cas pratiques, le module simple 
repr6sente bien la dynamique/~ des fr6quences inf~rieures ~l 10 15 rad/min. 

On traite le mod61e & ailettes avec pr6cision en utilisant une approche '5. collocation orthogonale 
d'ordre faible et le mod61e tridimensionnel est r6duit /~ un syst~me simple, du point de vue traitement 

par ordinateur. 

DAS DYNAMISCHE VERHALTEN EINES BERIPPTEN 
K REUZSTROM-W)~RME~JBERTRAGERS 

Zusammenfassung In den einzelnen Rippen eines Luft-Wasser-W~irmeiibertragers treten im station~iren 
Fall oft betdichtliche Temperaturgradienten auf. ~ber  den EinfluB des dynamischen Verhaltens der 
Rippen auf das dynamische Verhalten des gesamten W~irmei.ibertragers wurde eine theoretische Unter- 
suchung durchgefiihrt. 

Ein ModelL das radiale und axiale Tcmperaturprofile enthS, lt, wird mit einem einfachen Modell 
verglichen, in dem die radialen Gradienten vernachl~issigt werden. Fiir die meisten praktischen Fiille 
zeigt sich, dab das einfache Modell bei Frequenzen < (1,5+2)rain -1 das dynamische Verhalten sehr 
gut wiedergibt. 

Das Modell fiir die Rippen wird mit hohcr Genauigkeit unter Benutzung einer orthogonalen 
Zuordnungs-N~iherung niedriger Ordnung gel6st und das schwierige 3-dimensionale W~irmeiibertrager- 

Modell wird derart auf ein berechnungsm~i6ig einfaches System zuriickgeftihrt. 



1036 K. WAEDE HANSEN and K. DEMANDT 

~IdHAMI/ IKA OPEBPEHHOI-O TEFIf lOOBMEHHI/ IKA C F I OF I EP EqHbI M T E q E H I 4 E M  
AHHOTalIllll- B CTat~HoHapHOM cayqae qacTo o6napy~nBaB3Tcfl 'Cytl2eCTBeHHble TCMFIepaTypHBIe 
Fpaj1HeHTbl Ha OT~leJ1bHblX pe6pax BO311yLHHO-BO~l.qHOFO Tel/J/OO6MeHHI4Ka. WeopeTnqecKn H3yqeHO ~v 
BJIH~Hae ~HaMHqecKoH xapaKTepHcT~KH pe6ep Ha CyMMapny~3 IIHHaMHqecKyro xapaKTepncTHKy 
TerlJTOO6MeHHHKa. 

l-lpoae~eHo cpaanen~e MO~enH, ytll4TblaalOIJ2e~ pa~Ha~bnble H oceable npoqbH~H TeMlTepaTypbl, 
C rlpOCTO~ MO~eJIb~O, He yqHTblBarOIJ2e!~l pa~naJ~bHble rpa~I4eHTbl TeMnepaTypbl. B 6OJTbLH!4HCTBe 
npaKTHqecK~x c~yqaeB nafi21eHo, qTO npocTafl MO~e£1b OqeHb xopoIL10 oTpa~aeT ~HHaMnKy npH 
aacroTax nH~e 10-15 pa~/Mnn. 

C ~OflblLIOl4 TOqHOCTblO noayqeno pemenne ~n~ MOileJqH pe6pa c IIOMOLI2blO OpTOFOHal/bHOfi 
KO£1J/OKaLDIrf MaJ/oro nopnaKa n, cAe)IOBaTeJ/bHO, CJIOYKHblkl TpeXMepHbl~ TeHJIOO6MeHHHK CBO2/HTC~I 

K HpOCTO~ pac'~eTno.q CHCTeMe. 


